Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NMR Biomed ; 37(4): e5086, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38110293

RESUMO

Fluorine MRI is finding wider acceptance in theranostics applications where imaging of 19 F hotspots of fluorinated contrast material is central. The essence of such applications is to capture ghosting-artifact-free images of the inherently low MR response under clinically viable conditions. To serve this purpose, this work introduces the balanced spiral spectroscopic imaging (BaSSI) sequence, which is implemented on a 3.0 T clinical scanner and is capable of generating 19 F hotspot images in an efficient manner. The sequence utilizes an all-phase-encoded pseudo-spiral k-space trajectory, enabling the acquisition of broadband (80 ppm) fluorine spectra free from chemical shift ghosting. BaSSI can acquire a 64 × 64 image with 1 mm × 1 mm voxels in just 14 s, significantly outperforming typical MRSI sequences used in 1 H or 31 P imaging. The study employed in silico characterization to verify essential design choices such as the excitation pulse, as well as to identify the boundaries of the parameter space explored for optimization. BaSSI's performance was further benchmarked against the 3D ultrashort-echo-time balanced steady-state free precession (3D UTE BSSFP) sequence, a well established method used in 19 F MRI, in vitro. Both sequences underwent extensive optimization through exploration of a wide parameter space on a small phantom containing 10 µL of non-diluted bulk perfluorooctylbromide (PFOB) prior to comparative experiments. Subsequent to optimization, BaSSI and 3D UTE BSSFP were employed to capture images of small non-diluted bulk PFOB samples (0.10 and 0.05 µL), with variations in the number of signal averages, and thus the total scan time, in order to assess the detection sensitivities of the sequences. In these experiments, the detection sensitivity was evaluated using the Rose criterion (Rc ), which provides a quantitative metric for assessing object visibility. The study further demonstrated BaSSI's utility as a (pre)clinical tool through postmortem imaging of polymer microspheres filled with PFOB in a BALB/c mouse. Anatomic localization of 19 F hotspots was achieved by denoising raw data obtained with BaSSI using a filter based on the Rose criterion. These data were then successfully registered to 1 H anatomical images. BaSSI demonstrated superior detection sensitivity in the benchmarking analysis, achieving Rc values approximately twice as high as those obtained with the 3D UTE BSSFP method. The technique successfully facilitated imaging and precise localization of 19 F hotspots in postmortem experiments. However, it is important to highlight that imaging 10 mM PFOB in small mice postmortem, utilizing a 48 × 48 × 48 3D scan, demanded a substantial scan time of 1 h and 45 min. Further studies will explore accelerated imaging techniques, such as compressed sensing, to enhance BaSSI's clinical utility.


Assuntos
Fluorocarbonos , Hidrocarbonetos Bromados , Camundongos , Animais , Flúor , Imageamento por Ressonância Magnética/métodos , Imageamento Tridimensional/métodos
2.
Int J Hyperthermia ; 40(1): 2283388, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37994800

RESUMO

Purpose: A crucial aspect of quality assurance in thermal therapy is periodic demonstration of the heating performance of the device. Existing methods estimate the specific absorption rate (SAR) from the temperature rise after a short power pulse, which yields a biased estimate as thermal diffusion broadens the apparent SAR pattern. To obtain an unbiased estimate, we propose a robust frequency-domain method that simultaneously identifies the SAR as well as the thermal dynamics.Methods: We propose a method consisting of periodic modulation of the FUS power while recording the response with MR thermometry (MRT). This approach enables unbiased measurements of spatial Fourier coefficients that encode the thermal response. These coefficients are substituted in a generic thermal model to simultaneously estimate the SAR, diffusivity, and damping. The method was tested using a cylindrical phantom and a 3 T clinical MR-HIFU system. Three scenarios with varying modulation strategies are chosen to challenge the method. The results are compared to the well-known power pulse technique.Results: The thermal diffusivity is estimated at 0.151 mm2s-1 with a standard deviation of 0.01 mm2s-1 between six experiments. The SAR estimates are consistent between all experiments and show an excellent signal-to-noise ratio (SNR) compared to the well established power pulse method. The frequency-domain method proved to be insensitive to B0-drift and non steady-state initial temperature distributions.Conclusion: The proposed frequency-domain estimation method shows a high SNR and provided reproducible estimates of the SAR and the corresponding thermal diffusivity. The findings suggest that frequency-domain tools can be highly effective at estimating the SAR from (biased) MRT data acquired during periodic power modulation.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Termometria , Difusão Térmica , Temperatura , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
3.
Front Neurosci ; 15: 537666, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054401

RESUMO

In quantitative susceptibility mapping (QSM), reconstructed results can be critically biased by misinterpreted or missing phase data near the edges of the brain support originating from the non-local relationship between field and susceptibility. These data either have to be excluded or corrected before further processing can take place. To address this, our iterative restoration of the fringe phase (REFRASE) approach simultaneously enhances the accuracy of multi-echo phase data QSM maps and the extent of the area available for evaluation. Data loss caused by strong local phase gradients near the surface of the brain support is recovered within the original phase data using harmonic and dipole-based fields extrapolated from a robust support region toward an extended brain mask. Over several iterations, phase data are rectified prior to the application of further QSM processing steps. The concept is successfully validated on numerical phantoms and brain scans from a cohort of volunteers. The increased extent of the mask and improved numerical stability within the segmented globus pallidus confirm the efficacy of the presented method in comparison to traditional evaluation.

4.
NMR Biomed ; 33(10): e4361, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32696547

RESUMO

Sodium MRI is a promising method for assessing the metabolic properties of brain tumours. In a recent study, a strong relationship between semi-quantitative abnormalities in sodium MRI and the mutational status of the isocitrate dehydrogenase enzyme (IDH) with untreated cerebral gliomas was observed. Here, sodium relaxometry in brain tumour tissue was investigated in relation to molecular markers in order to reveal quantitative sodium tissue parameters and the differences between healthy tissue and brain tumour. The previous semi-quantitative approach is extended by use of suitable relaxometry methods accompanied by numerical simulation to achieve detailed quantitative analysis of intra- and extracellular sodium concentration using an enhanced SISTINA sequence at 4 T. Using optimised techniques, biexponential sodium relaxation times in tumour (T*2f , T*2s ) and in healthy contralateral brain tissue (T*2f,CL , T*2s,CL ) were estimated in 10 patients, along with intracellular sodium molar fractions (χ, χCL ), volume fractions (η, ηCL ) and concentrations (ρin , ρin,CL ). The total sodium tissue concentrations (ρT , ρT,CL ) were also estimated. The ratios T*2f /T*2f,CL (P = .05), η/ηCL (P = .02) and χ/χCL (P = .02) were significantly lower in IDH mutated than in IDH wildtype gliomas (n = 4 and n = 5 patients, respectively). The Wilcoxon rank-sum test was used to compare sodium MRI parameters in patients with and without IDH mutation. Thus, quantitative analysis of relaxation rates, intra- and extracellular sodium concentrations, intracellular molar and volume fractions based on enhanced SISTINA confirmed a relationship between abnormalities in sodium parameters and the IDH mutational status in cerebral gliomas, hence catering for the potential to provide further insights into the status of the disease.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Sódio/química , Adulto , Neoplasias Encefálicas/patologia , Simulação por Computador , Feminino , Glioma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Análise Numérica Assistida por Computador , Imagens de Fantasmas , Fatores de Tempo , Tirosina/análogos & derivados
5.
Mol Imaging Biol ; 22(1): 198-207, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30989437

RESUMO

PURPOSE: Positron emission tomography (PET) using O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) improves the diagnostics of cerebral gliomas compared with conventional magnetic resonance imaging (MRI). Sodium MRI is an evolving method to assess tumor metabolism. In this pilot study, we explored the relationship of [18F]FET-PET and sodium MRI in patients with cerebral gliomas in relation to the mutational status of the enzyme isocitrate dehydrogenase (IDH). PROCEDURES: Ten patients with untreated cerebral gliomas and one patient with a recurrent glioblastoma (GBM) were investigated by dynamic [18F]FET-PET and sodium MRI using an enhanced simultaneous single-quantum- and triple-quantum-filtered imaging of 23Na (SISTINA) sequence to estimate total (NaT), weighted non-restricted (NaNR, mainly extracellular), and restricted (NaR, mainly intracellular) sodium in tumors and normal brain tissue. [18F]FET uptake and sodium parameters in tumors with a different IDH mutational status were compared. After biopsy or resection, histology and the IDH mutational status were determined neuropathologically. RESULTS: NaT (p = 0.05), tumor-to-brain ratios (TBR) of NaT (p = 0.02), NaNR (p = 0.003), and the ratio of NaT/NaR (p < 0.001) were significantly higher in IDH-mutated than in IDH-wild-type gliomas (n = 5 patients each) while NaR was significantly lower in IDH-mutated gliomas (p = 0.01). [18F]FET parameters (TBR, time-to-peak) were not predictive of IDH status in this small cohort of patients. There was no obvious relationship between sodium distribution and [18F]FET uptake. The patient with a recurrent GBM exhibited an additional radiation injury with strong abnormalities in sodium MRI. CONCLUSIONS: Sodium MRI appears to be more strongly related to the IDH mutational status than are [18F]FET-PET parameters. A further evaluation of the combination of the two methods in a larger group of high- and low-grade gliomas seems promising.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Carga Tumoral , Tirosina/análogos & derivados , Adulto , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Estudos de Coortes , Feminino , Radioisótopos de Flúor/química , Radioisótopos de Flúor/farmacocinética , Glioma/diagnóstico por imagem , Glioma/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Tirosina/química , Tirosina/farmacocinética
6.
Sci Rep ; 9(1): 88, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30643159

RESUMO

Approaches for the quantitative mapping of water content, electrical conductivity and susceptibility have been developed independently. The purpose of this study is to develop a method for simultaneously acquiring quantitative water content, electrical conductivity and susceptibility maps based on a 2D multi-echo gradient echo sequence. Another purpose is to investigate the changes in these properties caused by brain tumours. This was done using a 3T hybrid magnetic resonance imaging and positron emission tomography (MR-PET) scanner. Water content maps were derived after performing T2* and transmit-receive field bias corrections to magnitude images essentially reflecting only the H2O content contrast. Phase evolution during the multi-echo train was used to generate field maps and derive quantitative susceptibility, while the conductivity maps were retrieved from the phase value at zero echo time. Performance of the method is demonstrated on phantoms and two healthy volunteers. In addition, the method was applied to three patients with brain tumours and a comparison to maps obtained from PET using O-(2-[18 F]fluoroethyl)-L-tyrosine and clinical MR images is presented. The combined information of the water content, conductivity and susceptibility may provide additional information about the tissue viability. Future studies can benefit from the evaluation of these contrasts with shortened acquisition times.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Água/análise , Adulto , Condutividade Elétrica , Humanos , Masculino
7.
PLoS One ; 12(5): e0176192, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28467458

RESUMO

Artificial, anisotropic fibre phantoms are nowadays increasingly used in the field of diffusion-weighted MRI. Such phantoms represent useful tools for, among others, the calibration of pulse sequences and validation of diffusion models since they can mimic well-known structural features of brain tissue on the one hand, but exhibit a reduced complexity, on the other. Among all materials, polyethylene fibres have been widely used due to their excellent properties regarding the restriction of water diffusion and surface relaxation properties. Yet the magnetic susceptibility of polyethylene can be distinctly lower than that of distilled water. This difference produces strong microscopic, background field gradients in the vicinity of fibre bundles which are not parallel to the static magnetic field. This, in turn, modulates the MRI signal behaviour. In the present work we investigate an approach to reduce the susceptibility-induced background gradients via reducing the heterogeneity in the internal magnetic susceptibility. An aqueous solution of magnesium chloride hexahydrate (MgCl2·6H2O) is used for this purpose. Its performance is demonstrated in dedicated anisotropic fibre phantoms with different geometrical configurations.


Assuntos
Magnetismo , Imagens de Fantasmas , Difusão , Imageamento por Ressonância Magnética/métodos
8.
PLoS One ; 10(9): e0138325, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26393515

RESUMO

The investigation of tissue magnetic susceptibility and the resultant magnetic field offers a new avenue for quantitative tissue characterisation by MRI. One crucial step in mining the phase and field data for relevant tissue information is the correction of externally induced field shifts. This article outlines a multistep approach comprising several methodologies for background field removal. The virtues of B0 long-range variation detection and compensation of more localised external disturbances are unified in a sequential filter chain. The algorithm is tested by means of a numerical Monte Carlo simulation model and applied to in vivo measurements at 3T and 9.4T as well as to a fixed brain tissue measurement at 9.4T. Further, a comparison to conventional filter types has been undertaken.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Algoritmos , Humanos , Campos Magnéticos , Método de Monte Carlo , Radiografia , Razão Sinal-Ruído
9.
Front Hum Neurosci ; 4: 9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20461231

RESUMO

Polarised light imaging (PLI) utilises the birefringence of the myelin sheaths in order to visualise the orientation of nerve fibres in microtome sections of adult human post-mortem brains at ultra-high spatial resolution. The preparation of post-mortem brains for PLI involves fixation, freezing and cutting into 100-mum-thick sections. Hence, geometrical distortions of histological sections are inevitable and have to be removed for 3D reconstruction and subsequent fibre tracking. We here present a processing pipeline for 3D reconstruction of these sections using PLI derived multimodal images of post-mortem brains. Blockface images of the brains were obtained during cutting; they serve as reference data for alignment and elimination of distortion artefacts. In addition to the spatial image transformation, fibre orientation vectors were reoriented using the transformation fields, which consider both affine and subsequent non-linear registration. The application of this registration and reorientation approach results in a smooth fibre vector field, which reflects brain morphology. PLI combined with 3D reconstruction and fibre tracking is a powerful tool for human brain mapping. It can also serve as an independent method for evaluating in vivo fibre tractography.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...